Dobrý den, prosím o pomoc s řešením tohoto příkladů. Vůbec mi to neví,jak mam počítat. Děkuji moc

správné odpovědi: NNANA

Příloha k dotazu
✓   Téma bylo vyřešeno.

Obtížnost: Střední škola
Jialong L.

Jialong L.

31. 05. 2022   20:27

1 odpověď

Tomáš K.
Tomáš K.
31.05.2022 21:44:56

Přeji pěkný večer.

Před zahájením jakýchkoliv úprav je zcela esenciální zavést podmínky řešitelnosti. Pro rovnici

e2ln(tan(x))=e2ln(cos(x))1e2ln(tan(x))=e2ln(cos(x))1

musí platit, že tan(x)>0tan(x)>0 a současně cos(x)>0cos(x)>0. Víme, že tan(x)>0tan(x)>0 právě tehdy, pokud

x(πn;πn+π2)x(πn;πn+π2), kde nZ.

Současně víme, že cos(x)>0 tehdy, pokud

x(2πnπ2;2πn+π2), kde nZ.

Za těchto podmínek můžeme provést následující úpravy.

Uvědomme si, že cln(x)=ln(xc) pro kladná x. Vzhledem k tomu, že tan(x) a cos(x) jsou pro x, která odpovídají našim podmínkám, kladná, můžeme tuto úpravu provést.

eln(tan(x)2)=eln(cos(x)2)1

Dále je dobré si uvědomit, že eln(x)=x pro kladná x. Vzhledem k našim podmínkám řešitelnosti můžeme provést i tuto úpravu.

tan(x)2=cos(x)21

Připomeňme, že tan(x)=sin(x)cos(x). Upravujeme:

sin(x)2cos(x)2=1cos(x)21

sin(x)2cos(x)2=1cos(x)2cos(x)2

Jelikož hodnoty x, pro které platí, že cos(x)2=0, nejsou zahrnuty do množiny přípustných x, můžeme upravovat:

sin(x)2=1cos(x)2

Připomeňme, že sin(x)2+cos(x)2=1 pro libovolné reálné x. Řešením naší rovnice je tedy libovolné x, které vyhovuje podmínkám řešitelnosti uvedeným výše. Jde tedy o následující množinu:

M= { xR | nZ:2πn<x<2πn+π2}

Projděme nyní jednotlivé možnosti.

a) Například víme, že 1M, ale 1M, tedy neplatí

b) Například víme, že 1M, ale 1+πM, tedy neplatí

c) Zjevně platí

d) Například víme, že 1M, ale 2M, tedy neplatí

e) Zjevně platí

Snad je to takto pochopitelné. Pokud budete mít doplňující dotaz, určitě se ozvěte.

Souhlasí: 1    
Pro napsání komentáře se musíte přihlásit.